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Alwla'aetmA model for stratified two-phase flow in pipes, pumps and other devices is presented. 
Using the assumption of a hydrostatic distribution of pressure over the cross section of a pipe, the 
effects of stratification are taken into account by means of specific terms in momentum and energy 
equations. These terms represent the pressure interactions between phases. Four concrete examples 
(classical earth gravity stratified flow, stratified flow in a regularly curved pipe, annular stratified 
flow caused by pre- or postrotation, and stratified flow in the impeller of a pump) and a comparison 
with an experiment are presented. 

I. INTRODUCTION 

The flow of a two-phase mixture in a pump out of nominal delivery is essentially multi- 
dimensional. As a result, classical two-phase flow pump models (of. Milddewiez  et al. 1978) 
do not deal with what occurs inside pumps and use only overall balance equations and 
head degradation corrdations. This method, which gives fairly good results, needs testing 
with mock-ups of each type of pump. It yields a prediction of the performances, but not 
an explanation of why these performances are obtained. The important effects of void 
fraction, relative volumetric flow rate and specific speed (Kastner et aL 1983) are not 
explained. Consequently, the reliability of such models in full size conditions is not clearly 
assured. 

A conclusion of some experimenters (e.g. Rundstadler & Pard 1978) is that the head 
degradation of pumps in two-phase flow seems to be caused by the stratification in the 
impeller. This stratification may be caused by Coriolis forces, centrifugal forces and/or 
curvature effects (earth's gravity is usually negligible with respect to these effects). 

If the flow is stratified, and especially if the stratified flow is torrential (see section 
VI), the energy of the pump motor is transferred to the liquid phase as kinetic energy. 
Consequently, the liquid phase accelerates and the vapor phase slows down. In the mal- 
adapted diffuser, the conversion into pressure of the high kinetic energy of the liquid phase 
in the presence of slow vapor is not efficient. Therefore, no significant pressure rise occurs 
in the impeller and diffuser, and the head is greatly degraded. 

On the other hand, if the flow is not stratified, intedacial friction and added mass 
effects are important and the slip ratio remains probably fairly close to 1. The energy of 
the pump motor is transferred to the flow as pressure head, and the head is only slightly 
degraded. 

For this reason, a model of two-phase flow inside pumps, using an axial description 
of the flow and including stratification effects, has been done. 

Grison & Lauro (1978) developed such an axial model especially for critical flow in 
pumps. They obtained fairly good results in even far from nominal conditions, but did not 
pay special attention to stratification. 

It is hoped that an axial model, which includes as many multidimensional effects (e.g. 
stratification) as possible, will enable the main phenomena to be understood and predicted. 
Of course, this model should be used only when the flow is more or less one-dimensional, 
that is to say only in the first and third quadrants (normal flow and normal speed of 
rotation or inverse flow and inverse speed of rotation). 

In this paper, stratification in the most general case will be studied. After explaining 
the basic hypothesis and the main assumptions, we will establish momentum and energy 
equations. Four examples that are useful for pump study will be presented: classic stratified 
flow, stratification in a curved pipe, stratification caused by pre-or  postrotation in the 
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suction duct of a pump and stratification in the impeller of a pump. Comparison with a 
very simple experiment will also be presented. 

2. BASIC PRINCIPLES 

The component normal to the tube axis of the forces per unit of mass acting on the 
flow is named the apparent transverse gravity. The main hypothesis used in stratified flow, 
is that a hydrostatic distribution of pressure is present in any cross section of the duct 
created by the apparent transverse gravity (Hypothesis H1). The main advantages and 
disadvantages of this model result from this hypothesis. 

Four other assumptions are made: 
H2. The effects of variations of the phase density p, and Pt over the cross section are 

neglected. 
H3. Continuity of pressure across the interface (no effects of surface tension or pressure 

jump induced by mass transfer) is assumed. 
H4. Each phase is continuous in any cross section (for each phase, any two points in 

the phase can be joined by a continuous path lying entirely in the phase). 
HS. The interface is isobaric (using HI, H2, H3, H4, one can show that this assumption 

is equivalent to assuming no local slip at the interface). 
With these assumptions, the Euler equations reduce to the forms 

ap,_ p,F x (a, V,, V ,M,x.y,z, t,...), ax 

apk _ pkF~, (a, g,, VI, M, x, y, z, t, . . .) ,  
ay 

[2.1] 

where k is the phase index ( k=v  for vapor and k = l  for liquid), Pk is the density, Pk is the 
local phase pressure, F ~  and F~, are the apparent transverse gravity projected over x and 
y axes dependent on the void fraction a, V, and Vi are the instantaneous space averaged 
vapor and liquid velocities, M is the total angular momentum, x and y are the transverse 
coordinates, z is the axial coordinate and t is the time. 

The apparent transverse gravity may be caused, for example, by 
earth's gravity, 
curvature of the pipe, 

- -  pre- or postrotation of a pump, 
m Coriolis and centrifugal forces. 
Let Pi be the pressure at a point i of the interface, with coordinates (X;, Y~). (Pi is well 
defined, as a consequence of assumptions H3 and HS). 

From [2.1], H3 and H4, we have 

j'x ~p, f '  ap, pk(X,Y) = P,(X, Y,.) + -x, "-~x dx + -~y dy. [2.2] 

where p, (X, Y) is the local pressure at the point (X, Y). 
Let 6k be defined by 

_x, dx + dy. [2.3] 

Using the notation < Xk > for instantaneous phase averaged value in a cross section of 
any variable Xk (Delhaye 1981), the phase averaged value of 6k is denoted by Ak 

Ak=a <Sk> • [2.4] 

As a consequence of assumption H5, Ak is independent of the choice of point i. Therefore, 
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the mean pressure in phase k, <Pk >,  is 

<pk> = P, + Ak [2.5] 

For example, in the particular case where F ~  and F~, are independent of x and y, we have 

A~ = Pk [F~(xo.k-- X,) + Fk.y(yo.k -- Y~-)], [2.6] 

where (xck, Y~.k) are the coordinates of the center of 'inertia of the phase k (cf. figure 1). 
In particular, one can show that there are two equilibrium configurations for the flow, 

one of which is stable (minimum of potential energy) and determined by the condition 

A, < O and A: > 0 [2.7] 

Since less dense phase is at the top, its pressure is less than that at the interface. 
Likewise, the heavier phase at the bottom has a pressure greater than that at the interface. 

Defining P as the mean pressure in the flow: 

P ~  a < p , >  + ( l - a )  <pt> , 

it can be shown that 

We have 

with 

P =  Pi + a A ,  + ( l - a )  At 

<Pk> = P + ( l - a ~ )  ek(A, - Ai) 

[2.8] 

[2.9] 

[2.10] 

e, = 1 and e ~ = -  1 , [2.11] 

a ,  = a and al  = 1 - a [2.12] 

3. M O M E N T U M  E Q U A T I O N  FOR STRATIFIED F L O W  

The local instantaneous balance of momentum averaged over the cross sectional area 
occupied by phase k in a pipe and projected along the tube axis (Dclhaye 1981), assuming 
that the square of the average velocity of phase k is equal to the average of the square of 

o~ I 
i x~l I X 

B~,~ ', 
...J 

Figure I. D~mi6on of B {x~), x ~  x, and x~. 
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the velocity of phase k, and using H2, is 

~ A  aspk Vt + ~ A  asps  Yi + ~ A  as <ps> 
at az az 

f~  d ~  a n , . n k p s - -  A a ,  < ( n ~ . ~ k ) . n ~  > 
+ U~k(zt) n k • ns~ az 

f .  ~ n z . ( n s . ~ s )  d~" : A ctk Pt <Fs • n:> + ~0 ~'~0 ns.nt--"-"~ 

_ f ~ , . ~ t ) n . V s m  k . d ~  . 
n k nk~, 

[3.11 

Notations ~'~ ~', nk, nk~-, n: are explained in figure 2. 
A is the cross section area, ~ s the viscous stress tensor of phase k, Fk the external 

force per unit of mass (i.e. gravity or acceleration of entrainment), and tht the mass transfer 
per unit area of interface and per unit of time. 

Neglecting the axial shear stress effect ((a/az) A s t  <(nz. ~k) • n: > is neglected), 
some calculations, set out in detail in appendix A, lead to the following expression of the 
balance of momentum equation: 

a A a t p s V t +  O__A ~P oat aE - -  at Ps Y~ + A - -  + A p~ + A ekE1 at az as dz az az 

+ A esE, aV" + A ekNOM + . . . . .  A ~t G ~ -  Dt - atAm aA 
az Oz dz 

+ A a k p k <  F k . n , >  + A e k V  W , - - A 6 k r i -  Ckxf~'~ 

[3.2] 

Equation [3.2] is also [A.7] of appendix A, and 
F is the rate of mass transfer between phases per unit volume of the duct, 

- -  W,. is the velocity of the interface, 
- -  % is the interracial shear stress per unit volume projected on the tube axis, 

Xf is the frictional perimeter, 
- -  Tk is the wall shear stress per unit of surface projected on the tube axis for phase k, 

Ck is the dimensionless coefficient of influence of friction of phase k. 

Figure 2. Notations used in [3. i]. 
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We use some specific t e rms :  

A p, = a 4,  + ( l - a )  4 ,  + a ( 1 - a )  0 (A, _ A~), [3.31 
a a  

a A E, ~ a ( l - a )  ~ ( , - At), [3.4] 

A E, =~ ~(1-a)~--~, ( , -  ~,), [3.51 

a A N ~ a (1-a )  ~-~ ( , - A,),  [3.6] 

G, =A a (1-a )  a (4, - A:), [3.7] 
az 

Dk =A f~. dg" n :  • n k  8 k  ~ • 
k(r.t) n k * i l k  

p, represents the effects of the variation of the level, and E,, El, N and Gz represent the 
axial effect of the variation of the apparent transverse gravity with V,, Vi, M and ~ Dk 
represents the effect of the axial variation of the cross-section shape and area. 

4. ENERGY EQUATION FOR STRATIFIED FLOW 

The same method is used for energy equations in appendix B, introducing similar 
specific terms. As these terms are usually not numerically predominant, their main interest 
in the energy equation is to point out the resemblance to the momentum equation. 

Another important consequence of this model is that the heat transfer between phases 
(important in a two-phase flow pump where the pressure may change significantly along 
the axis) must be calculated with phase properties at the pressure £,. at the interface and 
not mean pressure P. Some special cases of cavitation can be studied with this modelisation 
(P,., being usually lower than P, can be lower than saturation pressure for the mean liquid 
temperature for a pump with single phase at the inlet). 

5. REMARKS 

Specific terms due to the apparent transverse gravity, which appear in the momentum 
and energy written with fairly general assumptions, do not all appear together. This will 
be shown in sections 6 to 9. 

Let us note that the term p~, known in classic earth gravity stratified two-phase flow, 
is not an interracial pressure deficiency, as it has been named by Andreoni et aL (1981). 
Indeed, 

P~ ~ P- Pi 

These specific terms, except -D,  - a ,  A, (aA / 0z), represent pressure interactions between 
the phases. They disappear in mixture equations (sum of the phase equations). They are 
numerically important mainly in the vapor momentum equation. Physically, these terms 
are due to pressure interactions and represent the effects of the axial gradient of apparent 
transverse gravity. Indeed, it may seem surprising that forces acting perpendicularly to the 
axis of the tube have such an important effect projected on the axis of the tube. This may 
be understood with the help of some examples: 
(a) Classic stratified flow due to earth's gravity 

The earth's gravity, perpendicular to the axis of the flow, has an effect projected on 
the axis of the flow. (Arrows in figure 3a represent the direction of the effect.) 



312 F. DE 

Figure 3a. Out of equilibrium, p, (aa/Oz) ~ O. Figure 3b. In equilibrium, pj (aa/az) = O. 

(b) Stratified f low in variable gravity 
Let us imagine a stratified two-phase flow on a planet where gravity, constant in 

direction, is variable in intensity. 
This gravity, variable but perpendicular to the axis of the flow, has an effect projected 

on the axis of the flow. (Arrows in figure 4a represent the direction of the effect.) 

J ~ -.~-+ G s. 

-~--G¥ . 

Figure 4a. Out of equilibrium. G, ~ 0 p, (aa/az) = O. Figure 4b. In equilibrium, p, (+of+z) + G, = O. 

(c) Stratified f low in velocity dependent gravity 
Let us imagine a stratified two-phase flow in a rotating device, where Coriolis forces 

are important and where gravity is proportional and perpendicular to the velocity. 
This gravity, perpendicular to the axis of the flow, has an important effect projected 

on the axis of the flow. (Arrows in figures 5a and 5b represent velocity.) 

= = 

_ "- :_ - . - . }  , 

m 

Figure 5a. Out of equilibrium. E, (aY,/al~) + El 
(art/az) ~ 0. 

Figure 5b. In equilibrium. E, (aY,/ aD + El (aV~l 
az) + p, (aa/az) = O. 

Examples  o f  applications 
In order to explain the meaning and the consequences of these specific terms four 

examples will be presented, but others may be imagined. 

6. EXAMPLE 1 - -  "CLASSIC" STRATIFIED FLOW (PIPE IN THE EARTH'S GRAVITY FIELD) 

In this classic case, we have 

Fax = g and F~y = 0 , [6.11 

where g is the absolute value of the component of earth's gravity perpendicular to the tube 
axis. 

We have 

Ak = - Pk g (xo., - Xi)  [6.2] 

and can show that 

A 
p, = a ( l - a )  ~ g (p, - p,) , [6.3] 

where/3(Xj) is defined with 

E , =  E , =  O , N = O , G, = O [6.4] 

If the shape of the duct cross section is rectangular, with the side of dimension D parallel 
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to the component of earth's graVity, we have 

a,  A, ~ + D, = e, oD [6.5] 
az ~ - a  ( l - - a )  p, g A  a-"z 

and 

G, = - ~ a (1 -a )  (a p, + ( l - a )  p~ ) (g D) [6.6] 

The characteristic equation is found from the characteristic analysis of the mass equation 
[B.5] and the momentum equation [3.2]. In the present case, assuming that the constitutive 
equations for F, r,., rk and W~ do not depend on the derivatives of the dependent variables 
(in particular, we suppose we have no added mass effects), and also assuming that p, and 
Pt are constant, the characteristic equation is 

[6.7] 

The notation ~ for a phase variable X, or a product of phase variables represents the 
cross mean value 

= a X~ + ( l - a )  X, 

The solution of [6.7] are the eigenvalues. We can define three flow patterns: 
Nonhyperbolicflow. The two eigenvalues are complex, and the system is not hyperbolic. 

That means that small perturbations of infinite wavenumber and infinite frequency are not 
stable. This corresponds to the classical linear instability. The practical consequence is that 
the flow cannot remain stratified. 

Torrentialflow. The two eigenvalues are real and of the same sign. That means that if 
the flow is stratified, small disturbances cannot move upstream. 

Fluvialflow. The two ¢igenvalues are real and of opposite sign. That means that if the 
flow is stratified, small disturbances can move upstream. 

hype . . /  torrential -v .  . non rbolic ~,~ ..,~. 
0 
i 0 i 

i I 
t i i 
i i i 

o 
P 

fluvial - -  

Pi 

The hyperbolic condition may be written either 

p, > p'~2 _ (P v)2 
P 

[6.8] 

or equivalently 

( v , -  vI) 2 < ~(pt -  p, )Ae p, p,.8(X,) [6.9] 

Several phenomena may be studied with this model, such as wave propagation and counter- 
current stratified flow, small hydraulic jumps, and stratified flow in an horizontal venturi 
or nozzle. For example, the difference in velocity (/I, -- Vt), deduced from [6.9], differs by 
a factor 2 with respect to the experimental limit of stratification of Wallis (1973) or the 
theoretical limit of Mishima & Ishii (1980). 
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7. E X A M P L E  2 - -  C U R V E D  PIPE 

In this example we deal with a regularly curved pipe, such as a helix tube or the casing 
of a pump, with stratified flow caused by centrifugal forces. This study does not apply to 
bends in which entry effects are predominant. 

For the purpose of simplification, the earth's gravity is neglected. The apparent trans- 
verse gravity is the centifugal force. 

We suppose that the x-axis is in the osculating plane of the tube axis, and the apparent 
transverse gravity is 

F ~ x =  - V~C, F z , = 0  , [7.1] 

where C is the curvature of the pipe, positive if the curvature is directed toward the positive 
direction of the x-axis. 

and 

We have 

Ak = -- Pk Vi C (x~.k - Xi) [7.2] 

A 
--ct(1--ct) ~ C(pt V~ - p, V~) P~ 

where ]3(X;) is defined as for the classical stratified flow, figure 1. 
We have 

Ek = a(1--ct) p , K ,  , 

where Kk is defined by 

Kk ~ + 2 ¢k (X~.k - X~) Vk C 

[7.3] 

[7.4] 

Kk = + Ctk D C  Vk [7.6] 

The characteristic equation is found from the characteristic analysis of mass equations [B.5] 
and momentum equation [3.2]. In the present case, we assume that the constitutive equations 
for F, %, ~'k and W~ do not depend on the derivatives of the dependent variables (in particular, 
we suppose we have no added mass effects). 

If p~ and pt are constant, the characteristic equation is 

~ / ~ -  ~ . (2pV4-  ¢pK) 4- p V  z +  ¢ p K V  - pi = O , [7.7] 

where the notation - is explained in section 6. 
In the particular case of a rectangular pipe, we have 

p~ = ¢ p K V  , [7.8] 

and the flow is always torrential or nonhyperbolic. An eigenvalue analysis shows that as 
the quantity 

i E - p ,V ,  

grows, the eigenvalues become real. 

In the particular case of a rectangular pipe, with one of the sides of dimension D parallel 
to the x-axis, we have 

[7.s] 
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8. E X A M P L E  3 - -  PRE.  OR  P O S T R O T A T I O N  IN T H E  i M P E L L E R  OF  A P U M P  OR A T U R B I N E  

When a pump (or turbine) operates outside its nominal delivery, a swirling reverse 
flow appears in the inlet duet (el. figure 6). Below the nominal delivery, this swirling reverse 
flow rotates in the same direction as impeller rotation, and in the opposite direction above 
nominal delivery. This phenomenon is called "prerotation" for positive flow or "postro- 
tation" for negative flow. This pre- or postrotation causes centrifugal forces, equivalent to 
an apparent transverse gravity, which bring about an annular flow: liquid near the wall, 
vapor in the center of the duct. 

In order to give analytical expressions of the supplementary terms, we assume that the 
cross section of the suction duet is cylindrically symmetric, and we have to choose a radial 
distribution of tangential velocity. In order to simplify calculations it is assumed that the 
tangential velocity is proportional to the radius. This means that each point rotates at the 
same angular velocity (solid rotation). 

Noting that Vk.r is the tangential velocity of phase k, the radial pressure gradient is 
given by 

apk V[r 
- , [ 8 . 1 ]  

a r  r 

where radius r and angle 0 are the polar coordinates and [8.1] is equivalent to [2.1], but 
in polar coordinates, with 

I / L T  F~,-- and F~s = 0 [8.2] 
r 

We introduce the total angular momentum M, defined by 

M = YA, p, r V,,rdA + yA ptr VLrdA 

M may be regarded as a 7 'h main variable (the overall balance of angular momentum being 
the 7 th equation). 

With the notations 

A 
p =  ct 2 p, + ( l - a )  2 Pl and ~ = a p, + ( I - a )  Pt [8.3] 

we have 

~'M2 Pk [8.4] A k = -  A---Tekak ~ , 

c a s i n g  

~ v e r s e  f low 

~.~I 4" ' "4" impeller 

D a / p 

Figure 6. Prerotation and reverse flow. Schematisation of the flow in the inlet duct at low 
delivery. 
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27r M 2 
Pi  - -  A 3  

- -  a (1-a )  (Pt - P,) J (1-a)2o pt-a2 P,I 

N =  - a ( l - a ) - -  
2¢r M [$ 

A 3 0 2 

3 ¢r M 2 ~ dA 
G ~ = a ( 1 - a ) -  a ~  

~/, ~2 dz 

G , = O ,  E v = E , = O  , 

dA 
D r = 0 ,  D l =  - 2 A t d z  

[8.5] 

[8.6] 

[8.7] 

[8.8] 

[8.9] 

The supplementary terms are numerically predominant in the vapor momentum 
equation. 

An eigenvalue analysis shows that eigenvalues are real and stability is maximum for 
low void fractions (de Crecy 1983). This modelisation shows that the annular stratified flow 
due to pre- or postrotation is always unstable for high void fractions. This is consistant 
with the experimental observations: The author does not know of any experimental evidence 
of high void fractions in annular stratified flow due to pre- or postrotation, but numerous 
observations for low void fractions have been made. Overpressure on the wall, with respect 
to the mean pressure, may be several bars in postrotation. It is very important to take this 
fact into account when the performances of pumps with two-phase flow are measured. 

Taking into account pre- or postrotation in the suction duct of a pump leads to a slip 
ratio and a void fraction at the inlet of the impeller very different from those obtained with 
the classical moddisation without effects of the pr¢- or postrotation. The inlet slip ratio 
and the inlet void fraction have an important effect on the stratification in the impeller 
and, consequently, on the head of the two-phase flow pump. 

Another application of this example could be the annular cavitation in the discharge 
pipe of a turbine caused by postrotation. This phenomenon could be studied using classical 
correlations for heat and mass transfer with the property of water and steam at the pressure 
Pi and not P. 

9. E X A M P L E  4 - - F L O W  IN THE I M P E L L E R  OF  A PUMP 

It has been seen in the introduction that the experimenters conclude that the head 
degradation of a pump seems to be caused by stratification in the impeller. This can be 
easily explained. Let us consider a two-phase flow in an inclined pipe in a gravity field 
(figures 7a and b). 

In the nonstratified inclined flow (figure 7a), the phases are strongly coupled and 
velocities in cross section A and B are quite similar. There is conversion of the gravitational 
potential energy of the flow in cross section A to the pressure in cross section B. 

Figure 7a. Nonstratified inclined flow in a gravity field. Figure 7b. Stratified inclined flow in a gravity field. 
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On the other hand, in the stratified inclined flow (figure 7b) the phases are more 
independent and velocities in cross section A are very different from those in cross section 
B. There is conversion of the potential energy of the flow in cross section A to the kinetic 
energy of the liquid in cross section B. 

The same phenomena lead to a conversion of the energy transferred by the motor of 
the pump to pressure at the outlet of the impeller if the flow is not stratified (consequently, 
there is no important head degradation) or to kinetic energy in the liquid at the outlet of 
the impeller if the flow is stratified. In this last case, the diffuser and the casing are usually 
maladapted and only a very small transformation of kinetic energy to piezometric energy 
occurs in it; there is an important head degradation of the pump. 

In order to understand and predict this phenomenon, it is important to study: 
(a) The limit of stratification, which is not the purpose of this paper. 
(b) The stratified flow in the impeller of the pump. 

The study of the stratified flow in the impeller may be used to explain the effects of 
the geometry of the impeller (consequently the effect of the specific speed), of the inlet void 
fraction or inlet slip ratio, and so on. 

Four stratifying forces act as apparent transverse gravity in an axial description of 
two-phase flow in a pump. fl  is the angular velocity of the impeller, and X represent the 
vector product (cross product). 

(a) Perpendicular component of centrifugal forces and acceleration of entrainment: -- f l  
X ( ~  X R )  -- (dC~/dt) X R  

(b) Coriolis forces: - 2 f / X  Vk 
(c) Curvature effects: - V~ (dnz/dz) 
(d) Earth gravity: g 

Usually, centrifugal and Coriolis forces are predominant and earth's gravity is negligible, 
and the apparent transverse gravity may reach thousands of times that of the earth. 

Centrifugal forces and Coriolis forces act in the opposite direction if to Q > 0, in the 
same direction if to Q < 0. (Q being the total volumetric flow rate and the speed of rotation). 

The impeller may be described in cylindrical coordinates, where (n,, no, n,)  is the local 
base of orthonormal vectors (n, is radial, n# is tangential and n ,  is colinear to fl). The flow 
will be described in the local non-Gallilean frame of reference, using the center of inertia 
of the cross section as the origin and an orthonormal base of vectors, (nx, n~, n~), defined 
by: 

n: is in the direction of the mean velocity in nominal conditions , 

nx is normal to n .  , [9.1] 

n, = nzXn~ , 

nx is chosen in order to have ny • n ,  > 0 

The angles 7 and ~ are defined by 

& 
7 -- (n., n,) , 

q, £ (nz, . , )  
[9.2] 

Let R be the mean radius (i.e. the distance between the axis of rotation and the center 
of inertia of the cross section) and g the projection on n,, of the earth's gravity. 

With these notations, the following apparent gravity is obtained: 

dto 
1 apk _ _ R "~- cos ~/ + to2 R sin 0/ -- 2 to Vk cos 3' 

Pk Ox 

(dq, I .  3,) + Vi cos 3, ~ + ~ sm q~ cos + x to~ 

1 apk 

Pk ay 
-- g cos 3, -- R - ~  sm qJ sin 3, -- to' R cos ~/sin 3, -- Vi + y to 2 sin27. 

[9.3] 

[9.4] 
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Let F ' ~  and F'~y be the part of the apparent transverse gravity independent of x 
and y: 

4 do)  
F'~x = - R -~- cos 7 + c°2 R sin ~ - 2 to Vk cos y 

+ V~cosy +~sin~/cos7 , [9.5] 

A do~ . (_~) 
F ' ~ y  = g c o s  7 - R ~ r  sm ~ sin 7 - cos R cos tp sin y - V~ [9.6] 

According to [2.3], [2.4], [9.3] and [9.4], we have 

Ak = ~ Pk ]F'~x (x~.k) + F ' ~  (Y~.k - Y,-) 
6 

+ ~ c02 (x~k - X~) + ~ ~ s in~  (Y~k - Y~) , [9.71 

where (xm.k. Y~k) is the center of moment of inertia of phase k with respect to the center 
of inertia of the cross section. 

If the shape of the cross section is known it is possible to determine analytically the 
expression of A, and At as a function of a, g,, V~, p,, Pt, to and of the geometrical data 
and also an analytical expressions of E,, El, p~, G,, G,, D,, Di. In the general case. these 
expressions are very complicated. The terms E~ and Et contain effects of the axial variation 
of Coriolis forces and curvature effects. 

The main part of G~ is caused by the axial variation of the perpendicular component 
of centrifugal forces, and the main part of G, is proportional to dto/dt, i.e. to the rate of 
change of apparent transverse gravity. 

In the applications computed by the author, the term p~. is usually the numerically 
predominant term. It contains effects of the three major apparent transverse gravities 
(centrifugal forces, Coriolis forces, curvature effects) and their axial variations. 

10. COMPARISON WITH A VERY SIMPLE EXPERIMENT 

Rundstadler et al. 0978) have conducted an experiment with a single constant cross- 
sectional area, square-shaped, rotating Plexiglas channel with air and water flow (figure 8). 

As our model is not yet available on computer, we have chosen this experiment as one 
of the simplest possible. Theoretical results of the present model show good agreement with 

Figure 8. Diagram of the rotating channel. 
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Figure 9. Two-phase performance of the rotating channel. 
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points 

experimental data (figure 9). The Y-axis represents the normalised head coefficient, defined 
by H2¢/Ho where H ~  is the actual two-phase head and tto the single-phase head for the 
same total volumetric flow rate. The X-axis represents the volumetric quality j , / ( j ,  + jr), 
where j~ and jt are the superficial velocity of vapor and liquid, and ~t is a dimensionless 
volumetric flow rate of liquid, defined by 

~sA Jl 
--~-R ' 

where R is the external (outlet) radius and to the speed of rotation. 
Rundstadler & Patel (1978) made photos of the rotating channel when the head is 

degraded. These photos show that the flow stratified very quickly and that the void fracations 
seems to be .4 or .5 in the middle of the channel for a volumetric quality of .03 to .07. The 
volumetric quality for which the head is fully degraded (i.e. where P = 0  in the rotating 
channel) is quite sensitive to the limit of stratification used in the calculations made with 
the present model. 

11. CONCLUSIONS 

In this paper, we proposed a description of a stratified flow in a general case by a 
one-dimensional, six-equation model. This one-dimensional model includes some three- 
dimensional information, such as the effects of the apparent transverse gravity and its 
variations. The effects of pressure interactions between phases are explicitly taken into 
account by specific terms in momentum and energy equations. These terms may be nu- 
merically predominant, especially in the vapor momentum equation. 

Four examples were discussed: classic earth's gravity stratified flow, stratified flow in 
a regularly curved pipe, annular stratified flow caused by pre- or postrotation of a pump, 
and stratified flow in the impeller of a pump. Some comparisons with a very simple 
experiment show good agreement with this theory. 

Future work should include comparisons with numerous experimental data. Additional 
experimental and theoretical work is also needed to establish a valid and reliable criterion 
of stratification for examples 2, 3, and 4. 
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APPENDIX A 

Momentum equation for stratified flow: Detailed calculations 
Equation [3.1] is the starting point for these calculations. The first objective is to use 

only one mean pressure P and not two-phase pressures < p , > ,  and to develop the term 

j. 
rlz • Ilk Pk  - -  

uw,C:.t) nk • n k ~  

As the interracial pressure P,. is constant over the interface (assumption H5), we have 

n : .  n k p t  - -  - -  P i  n , .  n k - -  + n , .  n+S+ d ~  [A,I]  
U~Ctttt) n k  • nkt¢. Utft(:.t) n k • n k ~  k~t) n k n k l  ¢ 

with notations explained in sections 2 and 3. As a consequence of the limiting form of the 
Leibniz rule (Delhaye 1981), the first part of the fight hand term is equal to 
- P,  (a / 0z)  ( , ' l a d  

Let us define 

D k  A_~ f ~ k ~ t )  n: • n k ~k - -  
d ~  

n k  • n k ~  
[A.2] 

We then have 

f~¢ d ~  a n:. n, p k -  -- P i -  (,4 ct,) + Dk [A.3] 
U~ck~.t) n k • n k ~  a 2  

In the particular case where area and shape of a cross section are constant, we have 

nz.ilk = 0 on ~ k  

and consequently 

Ok = 0 , 

with the notation explained in section 3. 

(~t) m~ • V k  m ,  - -  
n k • nk~. 

--  ~k A F W,. [A.4] 

is the m o m e n t u m  transfer due to  mass  transfer. 

f+ nz.(n+ ~+)  
d ~  

• - - -  E + A r,  [ A . 5 ]  
+ ~t) nk • nk++ 

is the inte~acial shear stress. 

;~. C, X/+', [A.6] 
d ~  

~+') n+. (nk.  ~ k) n+.  n----~- 

is the wall shear stress. 
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a Act,, p, V, + --~A ! -A  a 
at az a~p~V~+  ~z az 

= - D, + A a, p, <F,.n,> +¢,AFIre'~-C, xf~ , [A.7] 

We also have 

o__ (a a,) + Dk ±az (A a,  <pk > ) - P, az 

= A  ~ . . , < p , > - ~ . , - ~ ;  + ~ o - 7 + D ,  [A.8I 

As A, may be a function of a, g,, VI, M, z; or any other variable, we have, using [2.5] 
and [2.9], 

a p; aak aP 
- - ( x  k < p t >  - -  = a , ~  
az az  8 z  

+[aAl+(l-a) A'+a(l-a)-~a(A'-A')]aakaz 
a a__V..V/ 

+ ~, a(1--a)---~. ( a , -  a l ) .  
ar l  a z  

a av, 
+ c, a (1 -a )  ~ (a, - a , ) .  a-~" [A.9] 

a aM 
+ e t a ( l - - a ) ~ - - - ~ ( A , , -  A t ) .  0-'z" 

+ ek a ( 1 - a )  ~ (A, - At) 
az 

--~ o o o .  

Using terms such as p~, E,, E, N, 6;: defined from [3.3] to [3.6], [A.7] is transformed 
by [A.9] into [3.2]. 

APPENDIX B 

Ene~ equation for stratified flow: Detailed ca/~/a~o~ 
In order to simplify the calculations, we make a supplementary assumption: 
H6: the walls are impermeable and rigid, which means 

V , .  n, = 0 on ~'~(z,t). [B.1] 

The local instantaneous energy balance averaged over the cross-sectional area occupied 
by phase k is (Delhaye 1981) 

~ A a' <P* ~- Yi + u' )) + °-" A a' <P* V~ ~2 Vi + hk Oz 

b 
- A akpk <Fk'V,> - - - A  a ,  < ( ~ , .  V t ) . n . >  

az  

f .  d:~ - ~ A  a ,  < ~ .  n ,> + P, V,-  n , ~  [B.2] 
aZ  uv~Oa) ll k • nk~ ¢ 

- ['__ mk g~+u, -(~,.VD.nk 
(~,) n k • nkv 

d~ 
k(~t)U~C~t) qk " nk 

n k • llk~, 
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where 
u~ is the internal energy of phase k per unit of mass, 
hk is the enthalpy of phase k per unit of mass, 

is the heat flux. 
We will neglect the axial shear stress effects (term (a / az) A ak < ( k" Vk). n: > ) and 

the variation of axial heat conduction (term (a / az) A ak < ~ • n, > ). These terms are usually 
numerically small compared with the others and would lead to second-order partial dif- 
ferential terms if they were taken into account. In order to simplify equations, we will also 
assume that covariance coefficient for phase velocities are 1. We assume that 

and 

< P k ( ~ V ~ +  Uk) > ----- pk(~ < V k > 2 +  <Uk > )  

<pk Vk Vi  + hk > = pk <Vk> <Vk>2 + <hk > 

[B.31 

[S.4] 

To simplify notation, < Vk> will be written as Vk, and <hk> will be written as hk. 

The first objective is to use only one mean pressure P and not two-phase pressures 
<Pk > and to develop the term 

f~ d ~  u~,(zO Pk Vk " Ilk 
I lk  * Ilkt¢" 

From assumptions H5 and H6, we have 

Pk Vk" Ilk = P~ Vk. nk over ~"U~k(~t) 

Therefore 

In.5] 

Vk" nk - -  - -  P i  J , .  Vk" nk ~ [ B . 6 ]  Pk 
I lk * I lkt¢ U~k~ t )  I lk  " I lkt¢ 

From the limiting form of the Gauss theorem (Delhaye 1981), we have 

V k ' n k - -  -- --  n , . V k . d A  + ~7"VkdA [B.7] 
U~'~C-.t) I lk " Ilk~" aZ k(zt) k(ct) 

With assumption H2, the local mass equation becomes 

= O [ B . 8 1  

From the definition of Vk, we also have 

f n z , V k d A  = A  a~ Vk 
k 

and the averaged mass equation with assumption H2 gives (Delhaye 1981) 

[B.91 

a ± O  Ar - - - A  ak Vk = ak) - E k -  
az at Pk 

Equation [B.7] becomes 

ff~ dC~ a A F  Vk . nk - -  - -  ( . 4  a k )  - -  C k - -  
u~kO.t) I! k • llk~ at Pk 

and the energy equation, using enthalpy hk instead of internal energy uk, becomes 

[n. lO] 

[B.11] 
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- -  akp~V~ ~ V [ + h ~  
at az 
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a~ < p~ > + P~ ~a~)  

l" 

= A a~ p, F t , .  V, - X~ qt~* + A Lq,, 
with the notation 

X¢ 
q~* 
q~.~ 

h~.i 

+ ek F hk.i + ¢k F T - 6k ~'~ Wj 

[n.12] 

is the projection on the tube axis of the forces' per unit of mass acting on phase k, 
is the heated perimeter, 
is the wall heat flux transferred to phase k, 
is the rate of heat transferred per unit of volume from the phase k toward the 
interface, 
is the enthalpy per unit of mass of phase k at the interface, other quantities have 
been previously defined. 

We are going to carry out the same transformation as in the momentum equations, 
using in addition the fact that aA/at  = 0 (from assumption H6). 

As Ak may be a function of a, t, V,, V~, M and any other variable, we have 

- - ~ A a k < p k >  + P ~ A a k = - A  ~ " k < P k  > - -Pi  
a t  

a A a k  <Pk> + P .  ~ A a k  A aP 
- a t  ' a t  = -  a k a t  

- A  I a A l + ( 1 - a )  a , +  

t 

a 
a ( 1  (a, 

{ a a  

a ]av~ 

a ]av ,  + ~1, a ( l - a )  ~ (A, - A,) 

a a ] aM 
+ E, - ( l - a )  ~-~ ( , - tx,)j at' 

+¢k  a ( 1 - a ) ~ ( A , - A i )  + ' . .  

and 

_ At)] aakat 

[n.13] 

[B. 14] 

We recognise that the same terms p~, E,, Ea, N appear in the momentum equations, 
where Gz is used instead of G,. 

a a 
G, is defined by: G,= a ( l - a )  ~ (A, - At). [B.15] 

Using terms Pi, E,, Et, N,, G,, [B.12] is transformed by [B.14] into 

at akpk V~-/-hk +--az Aakpk Vk V~[+hk -Aak--a t  

- ~ - E, aV~ a ~  aM Ap~aak A~k - A ~ k E t ~ - A ~ k N  
at at at at 

= A 6k G, + A ak Pk F~,.  VI, + Xc qt~k 

+ A q~E + ~kF hk.~ + ~kF ' -~  - ~k ~ w J  

lB.16] 


